Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines
نویسندگان
چکیده
Overhead high voltage power line (HVPL) online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.
منابع مشابه
Design and Optimization of Efficient Wireless Power Transfer Links for Implantable Biotelemetry Systems
Wireless power transmission is a technique that converts energy from radio frequency (RF) electromagnetic (EM) waves into DC voltage, which has been used here for the purpose of providing a power supply to bio–implantable batteryless sensors. The main constraints of the design are to achieve the minimum power required by the application, by still keeping the implant size small enough for the li...
متن کاملAn ultra low power wake-up signal decoder for wireless nodes activation in Internet of Things technology
This paper proposes a new structure for digital address decoders based on flip-flops with application in wake-up signal generators of wireless networks nodes. Such nodes equipped with this device can be utilized in Internet of Things applications where the nodes are dependent on environment energy harvesting to survive for a long time. Different parts in these wireless nodes should have an e...
متن کاملA Study of the Linear Electromagnetic Generator for Harvesting Electrical Energy from Initial Acceleration: Design, Optimization, and Experimental Validation
One of the important requirements in projectiles is to design a power supply for fuse consumption. In this study, an optimum design for the power supply, which includes a Miniaturized Inertia Generator (MIG), was introduced. The main objective of this research was to optimize the dimensions of the MIG with the aim of increasing energy. To achieve this, the design of experiment (DOE) was carried...
متن کاملImproving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملActive Omni-directional Piezoelectric Energy Harvesting System for Wireless Monitoring on Electrical Traction Shearer
For communication and energy supply problems caused by sensors wiring in condition monitoring, a novel wireless monitoring system based on Piezoelectric Energy Harvesting (PEH) and Wireless Sensor Network (WSN) were proposed to realize self-powered and intelligent detection of electrical traction shearer. With the maximum power accumulated from kinetic energy, the working condition monitoring s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016